HORIZON DISCOVERY

Diagnostic Reference Materials & Controls

Jonathan Frampton Horizon Discovery

Comparability of Horizon ctDNA artificial plasma to real samples

Real Plasma samples Unknown allelic frequency; copies/µl

- Variable quantity and concentrations
 - Lot-to-lot variability
 - Irregular supply
 - Limited supply of genotypes
 - Logistical challenges
- Variable contamination with other analytes/genomic DNA
- ctDNA degradation -time-limited storage
- Difficult to determine extraction efficiency

Horizon ctDNA samples Precisely defined allelic frequency; copies/µl

Defined volume and concentrations

Lot-to-lot stability

Reliable supply

Availability of rare genotypes

Standard shipping procedures

No interfering contaminants/analytes/genomictDNA

Long -term stability of ctDNA

Measurable and reproducible extraction efficiency

Horizon's artificial reference standards are ideal for analytical development validation & supporting global proficiency testing schemes.

Quantity: >6L for standard validation?

Storage, Shipping & Stability

ctDNA artificial plasma

- Stable at 4°C for 12 months from manufacture
- No pre-screening required
- Ease of logisitics worldwide (ex. HTA)
- Full NGS consent for analysis
- Large volumes easily available

Shipping on dry ice (-80°C) vs blue ice (4°C)

Shipping temperature does not impact DNA fragment size or stability Artificial ctDNA reference standards are stable for 4°C shipments

Shipping at RTP vs blue ice (4°C)

ctDNA artificial plasma Horizon samples can be shipped at RTP

Shipping on dry ice (-80°C) vs blue ice (4°C)

Shipping temperature does not impact allelic frequency or stability Artificial ctDNA reference standards are stable for 4°C shipments

Comparability of Horizon ctDNA artificial plasma to real samples

Real Plasma samples Unknown allelic frequency; copies/µl

- Variable quantity and concentrations
 - Lot-to-lot variability
 - Irregular supply
 - Limited supply of genotypes
 - Logistical challenges
- Variable contamination with other analytes/genomic DNA
- ctDNA degradation -time-limited storage
- Difficult to determine extraction efficiency

Horizon ctDNA samples Precisely defined allelic frequency; copies/µl

Defined volume and concentrations

Lot-to-lot stability

Reliable supply

Availability of rare genotypes

Standard shipping procedures

No interfering contaminants/analytes/genomictDNA

Long -term stability of ctDNA

Measurable and reproducible extraction efficiency

Horizon's artificial reference standards are ideal for analytical development validation & supporting global proficiency testing schemes.

Can provide ctDNA reference materials as low as 0.1% allelic frequency

Comparable DNA extraction from plasma or artificial plasma

Comparable DNA fragmentation profiles between real plasma ctDNA & Horizon samples

Comparable library preparation between real plasma ctDNA & Horizon samples

Comparability of Horizon ctDNA artificial plasma to real samples

Real Plasma samples Unknown allelic frequency; copies/µl

- Variable quantity and concentrations
 - Lot-to-lot variability
 - Irregular supply
 - Limited supply of genotypes
 - Logistical challenges
- Variable contamination with other analytes/genomic DNA
- ctDNA degradation -time-limited storage
- Difficult to determine extraction efficiency

Horizon ctDNA samples Precisely defined allelic frequency; copies/µl

Defined volume and concentrations

Lot-to-lot stability

Reliable supply

Availability of rare genotypes

Standard shipping procedures

No interfering contaminants/analytes/genomictDNA

Long -term stability of ctDNA

Measurable and reproducible extraction efficiency

Horizon's artificial reference standards are ideal for analytical development validation & supporting global proficiency testing schemes.

What does the cfDNA Multiplex Plasma Reference Standard look like?

		Expected Allelic Frequency (AF%)			
Gene	Variant	5% Multiplex I	1% Multiplex I	0.1% Multiplex I	100% WT Multiplex I
EGFR	L858R	5.00	1.00	0.10	0.00
EGFR	ΔE746 - A750	5.00	1.00	0.10	0.00
EGFR	T790M	5.00	1.00	0.10	0.00
EGFR	V769 - D770insASV	5.90	1.00	0.10	0.00
KRAS	G12D	6.30	1.30	0.13	0.00
NRAS	Q61K	6.30	1.30	0.13	0.00
NRAS	A59T	6.30	1.30	0.13	0.00
PIK3CA	E545K	6.30	1.30	0.13	0.00

Scope and design of the study

Evaluation of the performance of circulating tumor DNA (ctDNA) sequencing provider panels

Summary

Provider	А	В	С	D
DNA extraction efficacy (mean)	45 %	60 %	73 %	43 %
Replicate performance & precision	3 rd	2 nd	1 st	poor
Accuracy 100 validated mutations	85 %	79 %	95 %	-
Detection of 434 confirmed mutations	77 %	86 %	93 %	-
Number of CNA	33	10	59	-
Frameshift mutations	0	38	109	-
Rearrangements	8/8	4/4	8/8	-
	very good performance	very good performance	overall best performance	poor performance

ctDNA reference standards are suitable as internal proficiency controls

Publication in progress; evaluation performance of providers by using ctDNA reference & patient samples

Generation of ctDNA reference samples at Horizon Discovery

Horizon Discovery reference standards spiked into human plasma from consenting donors

- fragmented human genomic DNA (average size 170 bp) derived from engineered human cell lines
- mechanical shearing method

I) 4 replicates of Multiplex I cfDNA reference standard

- Digital droplet PCR (ddPCR) validated mutations of 4 genes: EGFR, KRAS, NRAS, PIK3CA
- Allelic frequencies 5%, 1%, 0.1% and matched wild type

II) 2 replicates of Structural Multiplex cfDNA reference standard

- ddPCR validated mutations of 8 genes: AKT1, EGFR, GNA11, MET, MYC, PIK3CA, RET, ROS1
- Range of allelic frequencies
- Short nucleotide variants (SNVs), copy number amplifications (CNA) and rearrangements

Criteria to determine the overall performance

DNA Extraction

Different extraction methods impact total DNA yield Increased DNA input impact extraction efficicacy

SNVs & SNPs

Precision

- Providers A, B and C reported the majority of replicates (> 85 %) with good precision (% CV < 10 %)
- Results of Provider D showed a high variability (% CV > 10%) for ~ 60% of the values

Relative frequencies of % CV levels

Overall high precision by Providers A, B and C

SNVs & SNPs Nomenclature

Identical mutation reported in <u>3 different ways</u> \rightarrow Comparison requires harmonization of results

Performance of detecting 100 validated mutations and CNAs

Accuracy

- no false positives (16 of 16 wt)
- false negatives only at low mutation allele frequencies and copy number amplifications

		Number of false negatives				
	False negative rate	SNVs 0.1 %	SNVs 1%	SNVs 5%	Met CNA at CN ~ 3	MYCN CNA at CN ~ 7
Provider A	16 %	13	0	0	1	0
Provider B	21 %	14	4	0	2	0
Provider C	6 %	5	0	0	0	na

Provider C reported most accurate results

Detection of frameshift mutations

Frameshift (fs) mutations

Provider C: 109 >> Provider B: 38 >> Provider A: 0

# fs	Provider B	Provider C	
17	2/2	2/2	Provider B and C concordantly reported 17 fs mutations in both replicates at similar allelic frequency
4	1/2	2/2	Provider C detected 4 fs mutations in both replicates (dup), whereas Provider B reported those in only one of the replicates
29 9	0/2 0/2	2/2 1/2	Provider C consistently detected another 29 fs in both replicates at similar AF that are present in parental cell lines

Provider C performed best: Consistent replicate concordance and confirmation by a 2nd Provider

Detection of copy number alterations

Copy number alterations (CNAs)

 a total of 66 unique CN alterations were reported in 9 genes:

Provider $A \rightarrow 33$ Provider $B \rightarrow 10$ Provider $C \rightarrow 59$

- Provider C: consistent replicate performance for all 59 reported CNAs
- Provider A & Provider B:
 82 & 80% concordance of replicates

Provider C performed best: consistent replicate performance and highest accuracy (validated CNAs or confirmation by a 2nd Provider)

Summary

Provider	А	В	С	D
DNA extraction efficacy (mean)	45 %	60 %	73 %	43 %
Replicate performance & precision	3 rd	2 nd	1 st	poor
Accuracy 100 validated mutations	85 %	79 %	95 %	-
Detection of 434 confirmed mutations	77 %	86 %	93 %	-
Number of CNA	33	10	59	-
Frameshift mutations	0	38	109	-
Rearrangements	8/8	4/4	8/8	-
	very good performance	very good performance	overall best performance	poor performance

ctDNA reference standards are suitable as internal proficiency controls

Publication in progress; evaluation performance of providers by using ctDNA reference & patient samples